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ABSTRACT

Attacks against vulnerable software have become a serious problem for industry and end-

users alike. There have been many techniques proposed to combat these attacks which range

from compiler modifications to additional architectural features. Most of these techniques

focus on attack detection, while ignoring the problem of how to gracefully recover from such

attacks. In this thesis we propose an architectural approach to attack detection and recovery

which we call rollback and huddle. In our approach, a lightweight attack-detection module

monitors a program’s execution as its state is continuously checkpointed. In the case of an

attack, the program state is rolled back to a time before the attack occurred, and an additional

HW/SW module is loaded to gain extra insight into the attack and possibly repair the original

vulnerability. Our approach is based on the observation that the vast majority of a program’s

execution can be trusted. Therefore, we aim to minimize the performance overhead during

“normal” execution. Once an attack has been detected, the system is put into a “high alert”

mode where a larger performance overhead is tolerated to make use of more complex techniques

and avoid system down-time. We introduce simple hardware modules that work alongside a

standard computer architecture, and aid in attack detection, checkpoint creation, and attack

recovery. Our experimental results show that this approach can be achieved with minimal

run-time overhead and resource utilization.
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CHAPTER 1. Introduction

One of the key problems facing the computer industry today is ensuring the integrity of

end-user executables and data. Most programs are written in low-level languages that allow

developers to write efficient code. However, this efficiency often comes at the cost of security

features commonly found in high-level languages such as bounds checking on arrays, type

checking of pointers, and protection of individual data elements. These language shortcomings

can be compensated for at the application level with proper programming techniques, but many

times they are neglected – both accidentally through programming errors and deliberately to

produce more efficient code. Software patches can fix specific vulnerabilities, but they act

retroactively after a vulnerability has been found and potentially exploited.

Recent research has introduced several compiler and architectural approaches which are

aimed at detecting general classes of attacks against vulnerable software. One issue is that

many of these current software protection approaches consider the detection stage as the logical

endpoint of their scheme, trapping an attack and then ceding control to a supervising process.

In some cases this is the preferred course of action. However, program termination can effec-

tively be viewed as a successful Denial-of-Service (DoS) attack. If the exploited vulnerability

were in a high-value application (a Web server for an e-commerce site, for instance), an appli-

cation restart required by any failed attack could lead to a loss of revenue. In summary, we

see a need for a software protection approach that can handle a general class of attacks while

also continuing to execute gracefully once an attack is detected.

In this thesis we introduce a novel approach to software security which we call rollback and

huddle. Figure 1.1 shows a conceptual view of our approach. We make use of software rollback

to achieve a graceful recovery of compromised programs. Software rollback is not a new idea,
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Figure 1.1 (a) An anomaly is detected in function E. Typical protection

schemes cause the program to halt execution. (b) In our ap-

proach, the program is rolled back to a safe state by utilizing

checkpoint logs. (c) The program restarts execution with extra

safety checks in place.

but applying it to the domain of software security is a new application of the concept. In our

approach, a lightweight security mechanism continuously operates with minimal performance

overhead. If this initial scheme detects that an attack has occurred, the program is “rolled

back” to a previous point in time. This rollback operation is made possible through the

recording of periodic checkpoints during execution that allow a program’s state to be recovered.

After rollback, the vulnerable portion of the program is further instrumented with stricter

security policies which may monitor control flow and memory accesses at a finer granularity.

Once identified as exploitable, a section of instructions could in theory be patched in real-time.

After these new policies are in place execution resumes from the state of the safe checkpoint.

As will be explained in Chapter 4, we introduce some non-intrusive architectural features to
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support our proposed approach. A Hardware Checkpoint Unit (HCU) snoops off-chip memory

accesses in order to log checkpoints and perform rollback operations. Initial continuous security

monitoring is accomplished through the use of a Lightweight Protection Unit (LPU), which

enforces a basic security policy. A Heavyweight Protection Unit (HPU) is placed inside the

memory fetch path, but acts only as a pass-through until a more secured mode of execution is

requested after a rollback. Our architectural simulation results show that the lightweight mon-

itoring and continuous checkpointing add an average of less than 10% performance overhead

to a variety of benchmarks.

The remainder of this thesis is organized as follows. In Chapter 2 we provide an overview

of related research in the fields of hardware-supported checkpointing and software protection.

Chapter 3 introduces the concept of rollback and huddle. In Chapter 4 we provide an example

implementation of our architectural features, and in Chapter 5 we present our benchmark

results for the example architecture. In Chapter 6 we perform analysis using real software

vulnerabilities and test the rollback capabilities of our approach. Finally, the thesis is concluded

in Chapter 7 with a discussion of what was accomplished with this project, as well as an

exploration into possible future work related to this research.
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CHAPTER 2. Related Work

Work related to our approach falls into two distinct categories. The first category consists

of attack detection schemes in the security domain. The second category is checkpointing and

rollback which follows work in the fields of fault tolerance and software debugging.

2.1 Attack Detection

The computing research literature is filled with various approaches to detecting and pre-

venting software-level attacks. One aspect that makes our work unique is that we focus on

system recovery after the initial point of detection.

Data Encryption: Several approaches focus on providing architectural support for en-

crypted execution and storage. In [24], the authors introduce the concept of eXecute-Only

Memory, or XOM, which provides a mechanism for cryptographic separation of instruction

and data-memory space. Yang et al. [48] present a more efficient implementation of XOM by

moving the encryption process off of the critical path. In [52] Zhuang et al. make optimizations

to memory encryption techniques at the compiler level by grouping secure memory transac-

tions so that encryption takes place over a block of data. The approach in [35] uses speculation

to decrease the latency of memory encryption. PointGuard [11] is a compiler-based approach

that encrypts all pointers in memory. Tuck et al. [44] improve upon PointGuard by providing

hardware support which reduces overhead and extends its security features by increasing the

complexity of the encryption algorithm.

Hardware Stack Protection: Due to the prevalence of stack-related software attacks,

one common theme found across a variety of approaches is the use of a secondary stack to

enforce a security policy. An early implementation of a return address stack can be found
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in [25]. One notable example is SmashGuard [30] which adds hardware functionality to inter-

cept function calls and returns in order to manage its own hardware stack. Modern speculative

processors contain their own Return Address Stack (RAS) which is used to predict return ad-

dresses. In [31], the RAS is modified to enforce a security policy which results in less than a

1% performance overhead. StackGhost [17] takes advantage of the sliding register window of

the SPARC architecture to protect the stack. Although using a secondary stack for return ad-

dresses detects many common attacks, it does not detect all forms of buffer overflow attacks as

is shown in [46]. However, its low overhead and modest hardware requirements make hardware

stack protection an ideal candidate for a lightweight protection scheme in our approach.

Software Stack Protection: Software techniques to protect the stack exist as well.

While these techniques can be effective at preventing attacks, they often have prohibitively

high overhead. StackGuard [12] is an approach that detects stack-based attacks by writing a

“canary value” on the stack after every return address. Any changes made to the canary value

indicate that an attack has taken place. StackGuard does not protect against all forms attack,

and its protection was shown to be easily bypassed in [8]. CFI [1] expands on StackGuard by

checking the integrity of all control flow branches. CFI was proved to be effective against all

buffer overflow attacks found in [46]. CFI’s additional security comes at the cost of additional

execution overhead (45% in the worst case).

Data Tracking and Program Flow Enforcement: Many software attacks originate in

data from spurious sources which disrupt program flow. Minos [13] is an architectural approach

that tags data with an integrity bit. Input from untrusted sources are tagged as such and not

allowed to modify the program flow. A similar approach is presented in [40] where the OS is

modified to tag I/O from spurious sources. These approaches require non-trivial modifications

to existing hardware in order to add tag bits to all system storage. Program Shepherding [23]

dynamically instruments programs to enforce security policies which preserve the intended

flow of the executing program. While Program Shepherding does not require the additional

tag bits of [13] and [40], it must be run on a specialized platform that is capable of instrumenting

program binary. A related family of approaches exist that rely on static analysis to enforce
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program flow [16, 45, 19, 34]. The scheme introduced in [50] uses additional hardware to

enforce a similar security policy at a finer granularity. While our approach shares little in

common with the execution of these schemes, we follow a similar security model of enforcing

program flow.

Physically Secure Architectures: While our approach focuses on guarding against

software-based attacks, a number of techniques exist that aim to protect against an adversary

who has physical access to a machine. Side-channel attacks [22] are one example of a physical

attack. In a side-channel attack, the adversary attempts to learn about a program’s behavior

by observing the physical timing of a chip [33, 7] and its microarchitectural features [2, 3].

The AEGIS secure coprocessor [41] provides an implementation of physical random functions

that can be used for assigning unique keys to an individual processor. The IBM 4758 secure

coprocessor [15] is an earlier example of an architectural approach to software security. An

adversary with physical access to the memory bus of a system can attempt to reverse engineer

the program by observing memory access patterns. Goldreich et al. [20] introduce the concept of

oblivious memory. Oblivious memory hides the actual pattern of memory accesses by accessing

memory in the same repeated order regardless of which addresses are actually needed by the

program. HIDE [51] is another approach that attempts to obfuscate the addresses that are

sent over the memory bus. A number of approaches exist[6, 18] that use Merkle hash trees [26]

to check that the contents of memory have not been physically tampered by an adversary.

2.2 Checkpointing and Rollback

Attack recovery is made possible in our scheme by checkpointing execution and rolling

back to a previous state. Once execution is logged, it can be replayed off-line for the purposes

of debugging or rolled back and re-executed to recover from errors. While the concept of

checkpointing and rollback began in the domains of fault tolerance and debugging [4], it has

began receiving more attention in the domain of software security and attack recovery.

Fault Tolerance and Software Debugging: Our checkpointing scheme is loosely based

on FDR [47] which itself can be traced back to SafetyNet in [39]. SafetyNet was designed to
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handle faults in shared-memory multiprocessor systems. It contains hardware checkpoint log

buffers in the processor’s cache as well as main memory to log writes to each location. FDR

expands the logging found in SafetyNet to include system I/O, DMA transfers, and memory

races. It also adds LZ77 hardware to compress the logs.

Another scheme based on [47] is BugNet [27]. Program execution is logged so that it can

be deterministically replayed off-line once a bug in encountered. It is unique because it logs

memory reads as opposed memory writes. BugNet is similar to our checkpointing scheme

because it is not a full-system recorder, but logs programs at the application level.

ReVive [32] is an approach to multi-processor fault tolerance. Processor state and memory

writes are logged similar to other approaches [47, 39]. In addition to the logging aspect, memory

is supplemented with parity information to recover from a loss of data. Revive works with off-

the-shelf components and only requires a modified cache-coherence directory controller. An

FPGA-based approach is presented in [43]. Similar to our approach, once the buggy application

has been rolled back, an attempt is made to instrument the program’s binary so that the bug

does not occur again. SWITCH [42] is an approach that builds on the work presented in [43],

and puts more emphasis on the checkpointing features of the architecture. Sidiroglou et al. [37]

also present a similar scheme that uses a speculative state of execution to recover from faults.

Security and Attack Recovery: ExecRecorder [14] is a Virtual Machine-based check-

pointing scheme which shares some similarities with our approach. ExecRecorder is a log-based

recovery mechanism designed to work with an intrusion-detection system and post-attack anal-

ysis tools. Like our approach, replay is signaled by an attack-detection mechanism. However,

our approach differs on a number of key points. First, ExecRecorder operates at the Virtual

Machine layer, whereas our approach works with the native architecture. The other key dif-

ference is that ExecRecorder performs off-line replaying in order to analyze the source of an

attack. Our approach performs an on-line rollback without terminating program execution.

DIRA [38] is an approach that is similar to our idea of heavyweight protection. In DIRA,

execution is checkpointed and rolled back upon attack detection. It attempts to identify the

source of the attack and repair itself in certain situations. DIRA suffers from substantial
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run-time overhead in many benchmarks. In our approach, we avoid most of this additional

overhead by implementing the additional identification and repair mechanisms after an attack

has been detected. Another example of attack recovery can be found in [36].
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CHAPTER 3. Rollback and Huddle

Our approach features multiple execution phases in order to achieve the goal of attack de-

tection and recovery. The first phase is lightweight monitoring which utilizes a low-overhead,

relatively simple attack detection mechanism designed to detect many common forms of at-

tacks. The second phase is the continuous checkpointing that occurs as a program executes.

These checkpoints act as system “snapshots” for a given instance of time. The third phase is

rollback. Rollback occurs after an attack has been detected. In this stage, the executing pro-

gram is restored to a point in time before the attack took place. The final phase is heavyweight

monitoring. Simply rolling back to a previous point and restarting execution would not be

sufficient to overcome an attacker who is aware of the checkpointing and rollback mechanism.

To prevent a replay of the original attack, the application is instrumented to enforce a more

robust security policy.

3.1 Lightweight Monitoring

The first phase of our approach is lightweight monitoring of the executing program. The

purpose of lightweight monitoring is to detect most attacks while minimizing the run-time

performance overhead. This is accomplished through the use of a low-overhead attack-detection

mechanism. Our approach is not limited to one specific type of attack detection scheme. In this

chapter we provide one applicable example, but in practice the attack detection mechanism

can be tailored to a given system based on the perceived threat model.

Our example lightweight detection scheme uses a secondary stack to store return addresses.

When a function is called, its return address is pushed onto the stack along with a timestamp

of when the function call took place. When the callee function returns, the value on the top
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of the stack is compared to the return address that is requested by the processor. If the called

address is not found in the secondary stack, the detection unit signals that an attack has

occurred. The timestamp of the return address that did not match is used to indicate the time

of the attack.

This lightweight protection scheme detects attacks at the function level. It verifies that a

called function eventually returns to the calling function. For instance, if function A calls func-

tion B, the lightweight protection scheme checks that B returns to A. This prevents malicious

code from being called in B and returning to A. In that case, an attack is detected, execution

is temporarily halted, and the system is signaled to begin the rollback process.

With all detection schemes there exists a tradeoff between security and performance. De-

tection schemes with a very fine granularity of analysis can provide a more secure environment,

but this extra security comes at the cost of increased performance overhead. As a practical

matter, for our lightweight scheme we put more emphasis on minimizing performance overhead

while still detecting the most common types of attacks.

3.2 Continuous Checkpointing

System state is saved by adapting aspects of the approaches found in [47] and [39]. As

a program executes, its state is saved in logs kept separate from the rest of memory. These

checkpoints allow a program to be rolled back to that point in time if an attack is detected.

The period of time between checkpoints is called the checkpoint interval.

In this thesis we make the simplifying assumption that the application is running on a

single-core processor. To expand our approach to work in a multi-core system, a mechanism

for logging memory race conditions is necessary, similar to what is found in [39]. Because

we are not interested in strict deterministic replay, rather restoring a system’s state we also

choose not to directly log I/O transactions. Instead, I/O is logged indirectly by capturing its

effects on the system through memory and processor state logging. I/O behaviors may change

upon rollback and re-execution depending upon how far the program is rolled back and how

the program is modified for re-execution.
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Figure 3.1 Contents of a typical checkpoint log. Checkpoint logs are iden-

tified by a timestamp and contain the necessary information to

restore a program’s state.

Figure 3.1 shows a detailed view of a checkpoint log in our implementation. The logs consist

of three pieces: timestamp, memory state, and processor state. The timestamp is the identifier

for a particular log. The timestamp is the cycle count in which the checkpoint interval began,

and it is recorded immediately when a new checkpoint is created. Memory state is recorded on

a per-location basis when writes occur. The current value along with a location identifier are

copied into the checkpoint log before the value is overwritten. It is sufficient to record the value

of a given memory location on the first write to that location and ignore subsequent writes until

the next checkpoint interval begins. Location granularity can vary between implementations.

Practical choices include logging memory writes at a per-word or per-cache-block level. We

will explore the tradeoffs involved in granularity choice in later chapters. Because our goal is

to restore the state of the program at the beginning of the checkpoint interval, we only need

to log the initial value for each interval. Processor state consists of the instruction pointer,
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register values, and I/O map. Like the timestamp, processor state is immediately logged at

the beginning of the checkpoint interval.

The policy for determining the length of a checkpoint interval can vary from system to

system depending on the application. There are a number of tradeoffs in policy choice which

need to be taken into consideration. The policy used in [47] and [39] is to checkpoint after a

fixed number of cycles. The main benefit of a fixed-cycle policy is that it guarantees a regular

checkpoint schedule. The primary drawback is that the memory logs will be of varying sizes

because there will not be a fixed number writes between checkpoints. This type of policy is

best for applications which make very little use of the memory log buffers. These can include

applications with few memory writes, and applications whose writes are to a limited range

of addresses. The checkpointing policy which we choose to focus on in this paper is a fixed-

write policy. In a fixed-write policy, the length of checkpoints is determined by memory write

frequency and locality. A fixed size is chosen for the memory log buffers and a new checkpoint

begins when the memory log buffer of the current checkpoint is filled. This maximizes the time

lengths of checkpoints and minimizes wasted storage because a memory buffer is guaranteed to

be full at the end of a checkpoint interval. A fixed-write policy also guarantees a fixed storage

size for each checkpoint which simplifies checkpoint storage allocation. This policy is optimal

for applications which make many memory writes and make extensive use of the memory log

buffers. Alternatively, the two checkpointing policies can be combined such that fixed-size

memory buffers are used in conjunction with a cycle threshold, and a new checkpoint interval

begins when either of the two conditions are met. This will guarantee regular checkpointing in

applications with few memory writes, but it may also lead to wasted storage due to the unused

portions of the memory log buffers.

Regardless of checkpointing policy, when a checkpoint interval comes to an end the CPU

is temporarily halted, and a new checkpoint log is created. Once the new checkpoint log is

created, the processor’s state is stored in the new checkpoint log and a timestamp is recorded.

When this process is complete, execution resumes and memory writes are recorded in the newly

created checkpoint log.
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Figure 3.2 (a) As a program executes, its state is checkpointed at normal

intervals until an anomaly is detected at S4. (b) The checkpoint

logs are cycled through until the system is restored to a safe

point at S1.

3.3 Detection and Rollback

Program rollback occurs when the lightweight protection scheme has signaled that an attack

has taken place. In Figure 3.2, a program’s normal execution is illustrated on the left. As time

goes on, its state changes (S1–S4). These states are captured in checkpoint logs (L1–L4) by

means of the checkpointing scheme that is in place. During state S4, the lightweight protection

scheme has detected that an attack has occurred. At this point execution is stalled and the

rollback process begins. The rollback process is illustrated on the right side of Figure 3.2.

Rollback begins by restoring the state captured by the most recent log, L4. The rollback

process continues to traverse through the earlier logs (L3–L1) until the program is restored to
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ROLLBACK DISTANCE(tattack, nattack, Ncp, C) {

distance = 0;

extra = 2(nattack−1);

for each checkpoint c ∈ C do {

distance = distance + 1;

if (tc < tattack) then {

break;

}

}

return (MIN(distance + extra, Ncp));

}

Figure 3.3 An algorithm for determining rollback distance.

the safe state, S1.

One method for determining how far to rewind execution is given in Figure 3.3. As was

previously described, when an attack is detected, the detection mechanism associates a times-

tamp with the event. This timestamp is an estimate of when the attack occurred. If this is the

first attack, we simply rollback to the first checkpoint before the time of the attack. This is

not sufficient if the vulnerability that led to the attack took place at an even earlier point. The

vulnerability could be repeatedly exploited causing an endless loop of rollbacks. To prevent

repeated attacks we keep track of how many times a rollback has happened. An extra rollback

distance is determined by an exponential function of the number of times that we have already

rolled back. More complex schemes are possible that make use of dynamic information flow

tracking [40]. This is left for future work.

When rollback begins, program execution is temporarily halted and the on-chip caches are

flushed. The first stage of program rollback is rolling back to the beginning of the current

checkpoint interval. This is accomplished by writing back all of the values in the current

checkpoint log. Writing back the values of the current checkpoint log effectively “rewinds” all

of the memory writes that have occurred during the current checkpoint interval. Once the

current checkpoint is rolled back, the next checkpoint is loaded from secondary storage. This

process continues until n checkpoints have been rolled back, where n is the number returned
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by algorithm ROLLBACK DISTANCE. At this point the processor is restored to the state

stored in the nth checkpoint, and execution resumes from the rollback point in a heavyweight

monitoring mode.

In our example system, the secondary stack of the LPU must also be rolled back because

its state is tied to the state of the executing program. The timestamp of the top element of the

stack must be no later than the time to which the program is rolling back. If the LPU is not

rolled back with the program, its contents will become corrupted and result in the incorrect

identification of attacks (false positives). In order for the LPU’s state to remain consistent, its

top element should be the first return address with a timestamp less than that of the program’s

rolled back state. Once the timestamp of the program’s rolled back state is known, this can

be accomplished by simply popping elements off of the LPU’s stack until a sufficiently early

timestamp is found.

If an attack takes place before the earliest checkpoint log, execution is immediately ter-

minated. While this scenario is not ideal for our approach, this behavior is no worse than a

standard detection scheme that employs no recovery mechanism. It is possible that an appli-

cation that terminates in this fashion can be restarted with a heavyweight monitoring scheme

in place to prevent repeated attacks.

3.4 Heavyweight Monitoring

Once a program has been rolled back to a safe state after an attack, an adversary could

simply repeat the attack if no changes are made to the executing program. This observa-

tion is what leads to the final phase of our approach: heavyweight monitoring. One possible

implementation of heavyweight monitoring is shown in Figure 3.4. Before execution resumes

from the point of rollback, the program’s binary is further instrumented with additional safety

checks in key locations to prevent a repeated attack.

While modifying a program’s binary executable at run-time is a non-trivial task, our ap-

proach avoids this issue by adding “phantom” instructions at initial compile-time. Conceptu-

ally, the compiler identifies potential locations of security vulnerabilities, and adds additional
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Figure 3.4 (a)Placeholder NOP instructions are inserted by the compiler

(b)The program is further for re-execution in the “Heavyweight

Monitoring” state

NOP instructions to serve as placeholders for a future live patch. These NOPs are preceded

by a jump instruction in order to minimize the performance overhead.

Once an attack is detected, the NOP instructions – along with the preceding jump – can

be replaced with instructions to patch the vulnerable code or to enable some other monitoring

mechanism. These new instructions are stored in a protected region of memory until the point

of execution replay. This provides an additional burden to an attacker looking to break these

heavyweight protection mechanisms.

Adding security features such as bounds-checking on arrays and type-checking to pointers

can add considerable overhead [28]. Our approach works under the assumption that program

degradation is better than program termination. With heavyweight monitoring we are willing

to make a compromise on pure execution speed in favor of increased security and ensured

stability.

Different possibilities exist for the length of time that heavyweight monitoring should last.

One possible policy would be allowing secure execution to last until program termination. This



www.manaraa.com

17

0

5

10

15

20

25

30

35

40

lame mad quicksort sha tiff2rgba tiffmedian

To
tal

 O
ve

rh
ea

d (
%)

8192 entries
4096 entries
2048 entries
1024 entries
512 entries

Figure 3.5 Total overhead as a function of memory log size.

policy offers maximum monitoring, but at the cost of an increase in overhead. A second policy

would be to execute in secure mode until the point of the original attack. This has the benefit

of minimal overhead, but it might open the application up to a second type of attack. A third

possibility is a mix between the two: executing in secure mode past the point of the original

attack, but eventually lifting the additional security.

3.5 Initial Evaluation

In order to evaluate the performance overhead of our proposed approach, we incorporated

a behavioral model of the LPU and HCU modules into the SimpleScalar/ARM toolset [9], a

series of architectural simulators for the ARM ISA. We assumed a 4 cycle delay for accessing

the LPU on each function call and return, as well as a 200 cycle delay at the HCU for storing

the processor state and managing the checkpoint data structure at the beginning of a new

interval. The input for evaluation were six benchmarks from the MiBench embedded bench-

mark suite [21]. As an initial investigation into the performance impact of our approach, we

compared the total overhead, checkpoint frequency, and maximum rollback distance for various
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Figure 3.6 Checkpoint frequency as a function of log size.

configurations of the HCU. In each of these HCU configurations, we are logging memory on a

per-word basis.

3.5.1 Overhead

Figure 3.5 shows the total overhead of our approach for five different checkpoint log sizes.

We varied the log sizes from 512 to 8192 entries, while keeping the total number of stored

logs constant at 64. The total performance overhead is the sum of the lightweight protection

scheme and the checkpointing scheme. The overhead of the lightweight protection scheme is

based on the number of function calls, so it is completely benchmark dependent. Because of

this, the overhead of the lightweight scheme is constant across all configurations for a given

benchmark. Figure 3.5 shows that allowing for larger checkpoint logs results in less overhead

due to checkpointing. In all benchmarks but quicksort, the total overhead was less than 5%

for log sizes of 4096 entries and 8192 entries, and less than 10% for all benchmarks with these

two configurations. The average across all benchmarks and configurations was 6.41%. When

the 512-entry configurations of quicksort and tiff2rgba are removed, that number drops to
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Figure 3.7 Rollback distance as a function of total stored logs.

4.87%.

3.5.2 Checkpoint Frequency

Figure 3.6 shows the checkpointing frequency of the same five configurations that were

used to measure total overhead. The checkpointing frequency of a configuration was generally

proportional to the memory log size of the checkpoints. The average checkpoint interval varied

greatly between benchmarks. Configurations with log sizes smaller than 2048 entries showed

considerable overhead in benchmarks with frequent checkpoints. This is especially apparent

when comparing the tiff2rgba benchmark in Figures 3.5 and 3.6. A log size of 8192 entries

results in an overhead of 2.6% while reducing the log size to 512 entries results in a 36.9%

overhead.

3.5.3 Rollback Distance

Figure 3.7 shows the maximum number of cycles that can be rolled back for a given number

of logs. The maximum rollback distance was calculated by taking the timestamp difference of

the newest checkpoint log and the oldest checkpoint log. We kept the log size constant at 4096



www.manaraa.com

20

entries while varying the total number of logs kept on record. This experiment demonstrates

that the maximum rollback distance does not always have a proportional relationship with the

total number of logs on record. The mad, quicksort, and sha benchmarks generally show a

relationship proportional to log number, while lame, tiff2rgba, and tiffmedian do not. The

reason for this is that memory writes do not always happen at regular intervals in all programs.

If a program executes for a long period of time with very few memory writes, its state will

not need to be checkpointed as frequently. Results indicate that tiffmedian exhibited phase

behavior with a large number of writes that spanned between 8 and 16 logs.
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CHAPTER 4. Architectural Implementation

In this Chapter we will outline a possible implementation of the additional architectural

features that enable rollback and huddle. Hardware modules include a Lightweight Protection

Unit (LPU), Hardware Checkpoint Unit (HCU), and a Heavyweight Protection Unit (HPU).

These additional hardware features are non-intrusive, and integrate into a standard computer

architecture consisting of a CPU, main memory, and optional secondary storage. Our hardware

is designed to minimize the performance impact during standard execution, as well as minimize

the total storage footprint required for checkpointing.

4.1 Lightweight Protection Unit

For this implementation of the LPU we consider a design that differs slightly from the return

address stack approach introduced in Chapter 3. Once again our design will protect software

at the function-call level. The LPU in this example is based on the design introduced in [44]

which implements a hardware version of PointGuard [11]. In this approach two instructions

are added to the ISA: an encrypted store and decrypted load. At process creation time, the

LPU will create a random key. When a return address is stored, it is encrypted by XORing

with the random key in the LPU. When the return address is used, it is decrypted by XORing

it with the LPU’s key.

This approach requires recompilation or binary modification of the target application. Dur-

ing recompilation, call instructions are augmented with the encrypted store instruction. Like-

wise, return instructions are augmented with the decrypted load instruction. If an attacker

attempts to overwrite the return address, the program will return to a random location due

to the XORing occurring during decryption. When this happens, an exception is thrown and
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the system is stalled so that rollback can occur. When the LPU decrypts an a return address,

it stores the encrypted address until the next decryption. If an attack occurs, it passes the

original encrypted address to the HCU so that it can determine how far to rollback execution.

This process is detailed in Section 4.2.

In this approach, an attacker cannot read the LPU’s key directly, however if an adversary

has access to an unmodified version of the executing program, and the attacker is able to read

the modified return address it is trivial to deduce the key and modify the attack accordingly.

These “read attacks” are addressed in the original work [44], however we do not defend against

such attacks due to the difficulty in mounting such an attack and the additional overhead

required to protect against them. This approach can also be extended to protect all code

pointers like the original PointGuard implementation [11], but at the cost of increased runtime

overhead. A full PointGuard implementation could be an ideal candidate for a heavyweight

protection scheme.

4.2 Hardware Checkpoint Unit

The Hardware Checkpoint Unit (HCU) provides the system with checkpointing and rollback

capabilities. The HCU handles both checkpointing and rollback duties because rollback is

essentially just the inverse of checkpointing. The HCU requires direct access to the main

memory bus, and implementation can take the form of either a standalone module plugged

into the system, or alternatively as a modified memory controller. It is designed to optimize

the relatively common case of logging memory addresses.

Figure 4.1 shows the HCU, and gives a high-level of view of the logging process. The HCU

itself consists of a basic logic controller, and some internal storage. Its internal storage is

a Content Addressable Memory (CAM) used to store the memory addresses that have been

logged during the current interval. Each time a write to main memory occurs the HCU must

check whether it has been logged. Utilizing a CAM allows for fast lookups during memory

writes. The CAM must be large enough to store each of the addresses of the current memory

log. The contents of the CAM are flushed when a new checkpoint is created. The physical
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memory logs are stored in a reserved section of main memory. The HCU logs memory writes

for the current checkpoint interval, but it also keeps a number of past checkpoints on record.

The reserved memory can be viewed as a circular buffer. When a new checkpoint is created, the

oldest checkpoint on record is overwritten. Each entry of the memory logs consist of data, as

well as an address specifier. It should be noted that the address is stored in both the memory

log and the CAM. The addresses stored in the CAM are only used for the purpose of quickly

checking whether the location has been logged, while the addresses stored in the memory log

are used for addressing the memory writebacks during the rollback process.

Configuration of the HCU is open to a number of optimizations, particularly in the area of

memory log parameters. The first parameter is memory log granularity. Memory log granular-

ity is the definition of what constitutes a unique memory address to be logged. Memory can

be logged as fine as the byte level, or as coarse as the memory-page level. Two realistic choices

are logging at the word level and logging at the cache-block level. As memory log granularity

becomes finer the storage overhead becomes greater, but log utilization increases as well.

Figure 4.2 provides two examples illustrating the tradeoffs in memory logging granularity.

In the first example, a program makes eight writes to the same cache block. The word logging

policy requires a 100% storage overhead to log the addresses. The cache-block logging policy

will log the cache block on the first write, and the seven subsequent writes will already logged.

Once again there is 100% log utilization, but this policy only requires a 12% storage overhead

for logging the addresses, assuming an eight word cache block. In the second example, a

program makes eight writes, but this time each of the writes are to different cache blocks. The

word logging policy once again requires a 100% storage overhead for logging the addresses,

and it also retains 100% log utilization. In the cache-block logging scheme, each of the writes

will be considered unique and require a separate logging transaction. The cache-block logging

scheme retains the 12% storage overhead for address logging, but log utilization drops to 12%,

as shown in Figure 4.2 by the light-colored boxes. Low log utilization can lead to more frequent

checkpoints, and thus decrease performance due to excess checkpoint creation. In Chapter 5

we choose to focus on a cache-block logging approach.
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The second memory log parameter to consider is the total size of the memory logs. A

larger memory log with more entries will allow for longer checkpoint intervals, and decrease

the performance penalty due to checkpoint creation. We can vary not only size of the current

memory log, but also the total number of checkpoints that we keep in storage. Although longer

checkpoint intervals can reduce total performance overhead, it also makes it more difficult to

rollback to a specific point in a program’s execution because of the long duration of checkpoint

intervals. In Chapter 5 we utilize a total memory log storage of 295 KB. Configurations range

from 8 memory logs with 512 cache-line entries to 128 logs with 32 cache-line entries per

log. We were able to achieve rollback distances in the millions of cycles range with these

configurations.

Finally, the HCU contains some simple logic to carry out its checkpointing and rollback

duties. The controller must keep track of the current checkpoint log. When the memory log

is filled, it is the end of the current checkpoint interval and the HCU stalls the CPU. The

controller flushes the CAM, and finds the location of the next checkpoint log in memory. The

controller saves the register state of the CPU in the current checkpoint log and then allows

execution to resume.

This particular implementation of the HCU assumes that the CPU is using a write-through

caching policy. We choose not to log the CPU cache directly because all writes will propagate

through the memory hierarchy in a write-through system. To enable logging in a system using

a write-back cache the HCU would need to flush the caches at the end of the checkpoint interval

and log any writes that have not been logged yet. A certain portion of the memory log must

be left free to store the outstanding writes remaining in the cache.

The HCU is also used for rollback. When an attack is detected, the HCU enters rollback

mode. The LPU sends the HCU the last return address that was used. Starting with the

current checkpoint log, the HCU writes back the memory values stored in the memory logs.

The HCU continues rolling back checkpoint logs until it finds the failed return address. The

HCU continues writing back the log that contains the return address. If this is not the first

rollback, additional checkpoints may need to be rolled back. When the HCU completes the
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memory write-back process, it restores the CPU register state to the state stored in the final

checkpoint log to which it rolled back. If all of the checkpoint logs are exhausted without

finding the return address, the HCU throws an exception and the system terminates execution

of the compromised program.

4.3 Heavyweight Protection Unit

The final piece of hardware added in our approach is known as the Heavyweight Protection

Unit (HPU). The HPU is used in the heavyweight monitoring mode of our approach. The HPU

must have write access to a program’s instruction space so that it can facilitate and accelerate

the additional instrumentation required for heavyweight monitoring. Implementation details

of the HPU will vary depending on the intended functionality and goals of heavyweight moni-

toring. We will outline a couple design possibilities for hardware which could be implemented

to aid in this process.

One possibility is using the HPU as protected storage for a number of instruction templates

which are used to further instrument the original code and replace the NOP phantom instruc-

tions. The instructions contained within the HPU would be templates to correct general classes

of attacks. One example would be code to check that the bounds of an array are not overrun.

Once an attack has occurred and the program has been rolled back, this HPU implementation

would take a number of parameters including the attack type and specifics about the attack

such as the size of the array being overrun. The HPU would use these parameters to select

the correct code template and tailor the instructions for the situation at-hand.

Another possibility for the HPU is for it to act as an accelerator for encrypted execution.

In this case, instead of inserting NOP instructions in the original program, the instructions

could already be in place in an encrypted form. Once rollback takes place, the the HPU would

identify and decrypt the encrypted instructions so that they can be executed upon rollback

and re-execution. Using the HPU as an accelerated encryption engine could also be extended

to create an encrypted-execution environment similar to XOM [24]. Instead of decrypting

placeholder instructions upon rollback, the HPU would encrypt the entire instruction space.
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As instructions are loaded from memory they would be fed through the HPU and decrypted

before they are delivered to the CPU and executed.

Systems which frequently interact with a network could make use of an HPU configured as

a hardware firewall. If the system was compromised by spurious input from the network, the

program (or even the HPU itself), could identify the IP from which the input originated. Upon

rollback and re-execution, the HPU could filter requests and block inputs from blacklisted IP

addresses.
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CHAPTER 5. Benchmarks and Experiments

In order to evaluate the performance overhead of our proposed approach, we incorporated a

behavioral model of the LPU and HCU modules into PTLSim Classic [49], a cycle-accurate x86

simulator. Simulation was performed using PTLSim’s out-of-order core model which simulates

a single-threaded application with realistic branch prediction and cache behaviors. PTLSim’s

processor core models a 64-bit processor and uses a combination of features found in AMD

Athlon 64, Intel Pentium 4, and Intel Core 2 Duo processors. The simulator configuration is

shown in Table 5.1:

A write-through policy was used for data writes so that any cache writes were automatically

propagated through the memory hierarchy. We assumed a 1 cycle delay for accessing the LPU

on each function call and return, as well as a 200 cycle delay at the HCU for storing the

processor state and managing the checkpoint data structure at the beginning of a new interval.

The HCU was configured log memory writes at the cache-block level. We assumed a memory

model that transfers 8 bytes (1 word) each cycle. Therefore, each logging transaction takes

9 cycles to complete (8 words per line, plus the address). If the HCU needs to log another

address before the current logging transaction is complete, it must stall the pipeline until it

completes.

PTLSim comes with patches that can be applied to the SPEC CPU2000 benchmarks suite.

The PTLSim patches do not modify the semantic behaviors of the SPEC benchmarks, the

patches simply insert function calls to the simulator engine within each of the benchmarks

so that simulation begins at the start of the main benchmark loops. We used a patched

version of the SPECint subset of the SPEC2000 benchmarks suite, and simulated 200 million

instructions on our modified architecture. As an initial investigation into the performance
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Table 5.1 Simulator configuration

Operating Mode 64-bit Out of Order

2 ALU

Functional 2 FPU

Units 2 Store Units

2 Load Units

Pipeline 11 stages

ROB 128 entries

L1 Instruction Cache 32 KB, 4-way set associative, 1 cycle latency

L1 Data Cache 16 KB, 4-way set associative, 1 cycle latency

L2 Cache 256 KB, 16-way set associative, 6 cycle latency

L3 Cache 4 MB, 32-way set associative, 16 cycle latency

Main Memory 140 cycle latency

impact of our approach, we compared the total overhead and maximum rollback distances for

various configurations of the HCU.

5.1 Performance Overhead

Figure 5.1 shows the total overhead for a number of HCU configurations. We varied the

size of the memory log from 512 entries down to 32 entries. Each entry consists of a cache block

containing 8 64-bit words, along with a 64-bit address identifier. We kept the total size of the

HCU constant across all configurations at 4096 total entries, which requires approximately 295

KB of total storage. Overhead during the lightweight monitoring phase of our approach comes

from three sources: the LPU, checkpoint creation, and stall cycles when the HCU is busy. The

overhead related to the LPU is constant across all configurations because it is directly related

to the function call-return pairs in a given program. Changing the size of the memory log

affects the other two sources of overhead because smaller memory log lead to more frequent

checkpoints. Decreasing the size of the memory logs also puts additional stress on the HCU

and leads to increased number of stall cycles. In Section 5.2 we provide analysis into how each

of these sources contribute to the total overhead.

Looking at Figure 5.1, as expected the larger memory log configurations perform better

than the smaller memory log configurations. The 32-entry configuration performed dramat-
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Figure 5.1 Total overhead of LPU and checkpointing schemes.

ically worse than the other four configurations. Across many benchmarks the performance

impact of log size begins to level off at 128 entries. The average performance impact across

all benchmarks and all configurations was 9.43%. If we remove the poor performance of the

32-entry configuration, that average drops to 7.20%. Excluding the 32-entry and 64-entry

configurations, all benchmarks stayed below the 10% mark, and many of them did not 5%

overhead. The one exception was mcf, which experienced a 19% slowdown for its 512-entry

configuration, and more than 50% with the 32-entry configuration. The unusually large amount

of overhead was due to its tendency to write to many unique memory locations which put a

lot of stress on the HCU. While running for 200 million cycles, the 512-entry configuration

created 19,189 checkpoints. The closest benchmark to this number was twolf which created

3,247 checkpoints.
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5.2 Overhead Breakdown

Figure 5.2 shows a breakdown of how each of the overhead sources contributed to the

total overhead in each of the SPECint benchmarks for the 128-entry HCU configuration. As

mentioned in Section 5.1, LPU overhead is constant for a given benchmark regardless of HCU

configuration because LPU overhead is based on the number of function call-return pairs, which

does not change. Configurations with smaller memory log sizes have a larger proportion of

overhead come from checkpoint creation and stall cycles due to the associated logging frequency.

Conversely, configurations with larger memory log sizes have a larger proportion of overhead

related to the LPU.

Figure 5.2 shows that the LPU is the largest source of overhead when compared across

all benchmarks, accounting for approximately 65% of total overhead. Checkpoint creation

and HCU stalling account for approximately 19% and 16%, respectively. The benchmark

mcf suffers from tremendous checkpoint-related overhead. This shows that the HCU simply

cannot keep up with the large volume of unique memory writes and the subsequent logging

load. The benchmarks vpr, twolf, and bzip2 show similar checkpoint-related slowdowns,

though not as extreme as mcf. When comparing with Figure 5.1, the total overheads of these

three benchmarks were significantly lower than mcf. Although HCU stalling accounted for

the smallest proportion of overhead, its effect is not negligible. Future HCU designs could

possibly incorporate some type of caching abilities so that the hardware can handle a number

of outstanding logging operations. This could potentially eliminate overhead related to HCU

stalling.

5.3 Rollback Distance

Table 5.2 compares the maximum rollback distances for the same five HCU configurations

used in Section 5.1. We observed a large amount of variation in the maximum rollback distances

between benchmarks. The 512-entry configuration was able to roll back over 250 million cycles

of the eon benchmark, but the same 512-entry configuration could not roll back more than

1 million cycles of the mcf benchmark. Configurations of 64 entries could generally rollback
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anywhere from 1 million to 10 million cycles, with some exceptions. The 32-entry configuration

performed much worse. The 32-entry failed to rollback more than 1 million cycles in four

benchmarks, and it was only able to rollback more than 2 million cycles in three benchmarks.

Figure 5.3 shows the relative impact that different HCU configurations had on a given

benchmark. The graphs for each benchmark are normalized to the number of cycles rolled

back by the 512-entry configuration, which achieved the largest maximum rollback distance in

every benchmark. The vpr and eon benchmarks are normalized to their respective 256-entry

configuration results because the 512-entry configuration was capable of rolling back the entire

benchmark runs for those two programs, which skewed their results.

Despite storing the same number of total memory log entries in every configuration, many of

the benchmarks are very sensitive to changes in the HCU configuration. The eon benchmark is

especially sensitive to HCU configuration. The 32-entry configuration can only rollback 1% of
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Table 5.2 Maximum cycles rolled back for different HCU configurations

Memory Log Size 512 entries 256 entries 128 entries 64 entries 32 entries
Total Checkpoints 8 16 32 64 128

gzip 3,912,582 3,807,096 3,751,585 3,682,519 3,539,779

vpr 197,973,063 1,130,098 824,390 638,215 533,719

gcc 11,676,040 6,979,757 6,176,254 5,007,841 4,069,716

mcf 960,964 953,047 943,423 937,900 819,897

crafty 12,710,404 10,941,094 7,736,916 3,327,726 845,634

eon 269,482,558 52,384,716 19,492,186 1,121,911 598,838

bzip2 25,006,574 24,395,576 23,655,060 21,762,244 18,233,093

twolf 1,527,168 1,461,540 1,366,358 1,227,178 1,105,523

perlbmk 12,398,191 10,115,520 6,241,233 1,396,125 1,145,623

parser 10,206,897 9,062,926 6,912,091 4,588,033 2,763,116

gap 5,926,917 5,070,217 3,804,918 2,285,961 1,341,548

vortex 9,985,679 6,457,392 3,197,701 2,817,878 1,980,220

the cycles that the 256-entry configuration can rollback. A number of other benchmarks show

the 32-entry configuration rolling back less than 30% as far as the 512-entry counterpart. The

benchmarks that were sensitive to the HCU configuration were those with an even distribution

of memory writes and a constant rate of checkpoint creation. Some benchmarks showed less

sensitivity to changes in the HCU configuration. The gzip benchmark is one such benchmark.

This indicates that there was most likely some stretch of execution with very few writes that

all of the configurations were able to rollback.
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CHAPTER 6. Attack Analysis

A common form of software-based attacks is known as “Stack Smashing” [29], and it is an

example of a buffer overflow attack. The stack segment for function F is shown in Figure 6.1.

It contains an array temp, a number of local variables, and the function’s return address. As

temp is written, it grows toward the top of the stack. If enough data is written into temp,

it is possible to write past its intended bounds and eventually replace the function’s return

address. If an attacker knows that a program contains a vulnerable buffer, it is possible to craft

a specially-formulated input so that the return address is overwritten with a specific value to

return to the attacker’s malicious code.

To verify the effectiveness of our checkpointing and rollback mechanisms we tested our

approach against eight vulnerabilities found in real-world applications. The program names

and vulnerable are listed in Table 6.1. All of the programs are open source and written to

be run in a Unix environment. Originally discovered as part of a class project [5], details for

each exploit can be found in US-CERT Cyber Security Bulletin SB04-357 [10]. Each of the

programs contain an overflowable buffer that an attacker can use to run arbitrary code on the

victim’s machine. We simulated the programs using the PTLSim [49] Classic out-of-order core

model.

6.1 Attack Time

Initially, we investigated the number of cycles that need to be rolled back to recover from

an attack. Each of the vulnerable programs was given malicious input designed to overflow its

vulnerable buffer. Within our simulation environment we measured the cycle count from the

point that input was given until the point that the program attempted to use the malicious
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Figure 6.1 A vulnerable buffer, temp is placed on the stack. An attacker

is able to write past its intended bounds and replace the return

address so that the function returns to attack code.

return address. This is the point of attack-detection for any of the protection schemes used

in this thesis. The results of these tests are shown in Table 6.1. Cycle counts ranged from

304,864 in o3read all the way to 6,745,763 in villistextum.

Once we collected general information about the attacks, we verified that our approach

would actually be able to rollback to the point of input. We configured the HCU to use

256 memory logs consisting of 128 memory-word entries per log. Once again the vulnerable

programs were given malicious inputs. In each case, when the program attempted to return

to the malicious return address, the HCU contained sufficient information to rollback to the

time that input was received.
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Table 6.1 Required cycle rollback of vulnerable programs

Application Version Cycles from input Cycles to overflow Size of buffer Recoverable?
to detection buffer (bytes)

villistextum 2.6.6 6,745,763 6,129,857 32,768 Yes

ringtonetools 2.22 3,640,082 94,828 1,024 Yes

csv2xml 0.5.1 1,841,252 119,261 1,000 Yes

2fax 3.0.4 727,625 3,016 256 Yes

bsb2ppm 0.0.6 665,687 86,108 1,024 Yes

jpegtoavi 1.5 432,591 99,465 4,096 Yes

o3read 0.0.3 304,964 92,206 1,024 Yes

6.2 Overflow Time

After verifying that our approach was able to recover from each attack, we attempted to

quantify the time required to overflow the vulnerable buffer. We measured the cycle count

from the first write to the vulnerable buffer until the first write past the intended bounds of

the buffer. Using 6.1 as an example, this would be the cycle count required to write from

address 101 (temp[0]) to address 108 (local var1). These times are shown in Table 6.1.

One of two causes was at the root of each of these vulnerabilities. In some programs the

vulnerabilities were the result of calling library functions such as scanf that copy any amount

of data into a buffer, regardless of the source and destination sizes. The other vulnerabilities

were caused by blindly incrementing a pointer during a loop without checking the intended

buffer boundary. The time required to overflow the buffer is related to the size of the buffer

as well as the additional computations taking place during the loop. The buffer in 2fax is

only 256 bytes, and the there are no computations other than the data copying. At the other

extreme is villistextum which has a 32,768-byte buffer, and many additional computations

are performed during each loop iteration.
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CHAPTER 7. Conclusions and Future Work

In this thesis we have presented a new approach to software security that puts equal em-

phasis on attack detection and attack recovery. We have also investigated a number of timing

characteristics in a set of real-world buffer overflow vulnerabilities. In this work, we have

focused on the initial lightweight monitoring mode of execution, consisting of a lightweight

detection mechanism operating alongside a checkpointing scheme. Although our initial results

are promising, we see several avenues for future work to build upon the foundations laid in

this thesis.

We designed the checkpointing scheme so that it requires a very small storage footprint

for each process that is logged. The small storage footprint will enable many processes to be

simultaneously and independently checkpointed. For instance, the HCU configurations in our

benchmarks utilize approximately 300 KB of storage per process. Using a similar configuration,

a system could manage over 100 processes and only require 30 MB of total checkpoint storage.

This is a very small memory footprint considering many modern computers contain more than

2 GB of system memory. Checkpointing multiple processes independently will require small

modifications to the OS, so that our checkpointing hardware can be made aware that context

switches are occurring. Our checkpointing hardware will also need to be extended so that it

can swap out its CAM entries when context switches occur. Checkpointing multiple processes

independently will be an important feature because if one process is compromised, we do not

want to disrupt all of the healthy processes by rolling back the entire system.

The work in this thesis utilized a simple lightweight protection scheme that only protected

against the most basic of software attacks. We chose this scheme for its simplicity and rel-

atively low overhead characteristics. Future implementations of our approach could explore
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the use of more complex detection schemes and investigate the tradeoffs involved in mak-

ing such decisions. The area of our work that leaves the most room for future research is

the idea of heavyweight monitoring. We have suggested the basis for a number of possible

implementations, but we have left the architectural details of such features for future work.

Effective implementations of heavyweight monitoring could one day lead to self-patching soft-

ware. Developing self-patching software will require a study of the structural characteristics

that make up software bugs/vulnerabilities. Those characteristics and their fixes will need

to be generalized so that they can be automatically identified and applied by our hardware

module.
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[2] O. Aciiçmez. Yet another microarchitectural attack:: exploiting i-cache. In Proceedings of

the 2007 ACM workshop on Computer security architecture (CSAW), pages 11–18, 2007.
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